Drive System

The following illustrations show the two types of liquid crystal drive systems available.

System	Characteristics	
Static drive system	 Obtainable high margin of operating voltage allows higher quality display. Simple drive circuit conditions, low-voltage operations possible. 	Common le 1d 1c, 2e 2d 2c, Be 8d 8c, 8D,P Static drive terminals
Dynamic (time-division) drive system	When a large number of elements are driven: ■ Fewer drive circuits. ■ Fewer connections between circuit and display cells.	COM1 COM2 COM3 S1 S2 S3 S4 S5 S6 S22 S23 S24 <example> Time-division drive(3-division)terminals</example>

Dynamic (Time-Division) Drive System

1. Voltage averaging method

This method provides optimum bias 1/a for the number of time divisions by weighting the drive voltage for N-1 deselects of the scanning side less than the drive voltage of one select of the scanning side.

→The voltage averaging method 1/a bias is calculated according to the following formula :

2. Operating voltage range

The lighting condition of the liquid crystal depends on the effective value of the drive voltage. The maximum operating margin α is expressed as follows:

$$\alpha = \sqrt{\frac{\sqrt{N+1}}{\sqrt{N-1}}} = \left(\frac{Vth_2}{Vth_1}\right) - \dots - Vth_1 : \text{Voltage representing 50\% of luminance characteristics of select waveform.} \\ Vth_2 : \text{Voltage representing 74\% of luminance characteristics of deselect waveform.}$$

