Chip Bead; CIB/CIM Series For EMI Suppression

The CIB, CIM Series are used for EMI suppression filters.

These beads suppress electro-magnetic wave noise by increased impedance, especially by increased resistance at noise frequency.

CIB series

The CIB series is composed of mono-layer internal conductor that allows low impedance and low DC resistance.

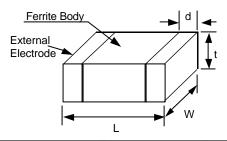
CIM Series

The CIM Series display high impedance because it is composed of a multi-layered internal conductor and has excellent attenuation characteristics for wide band frequencies

General Features

- Smallest inductors suitable for surface mounting
- Perfect shape for automatic mounting, with no directionality
- Excellent solderability and high heat resistance for either flow and reflow soldering
- Monolithic inorganic material construction for high reliability
- Closed magnetic circuit configuration avoids crosstalk and is suitable for high density PCBs.

Applications


 High frequency EMI prevention application applicable to computers, printers, VCRs, TVs and portable telephones

Part Numbering

CI M 21 O 121 N E (1) (2) (3) (4) (5) (6) (7)

- (1) Chip Inductor
- (2) B: Mono-layer type, M: Multi-layer type
- (3) Dimensions
- (4) Material Code: (U: high impedance at 10 MHz; J: Low impedance at 10 MHz)
- (5) Normal Impedance(110:11 Ω , 121: 120 Ω)
- (6) Thickness option(N:Standard, A:Thinner than standard, B: Thicker than standard)
- (7) Package Style(C:paper tape, 7" reel; E: embossed tape, t" reel)

Dimensions

- 11	lnit.	mm
U	אוו וי	111111

SIZE CODE	L	w	t	d
05	1.0 ± 0.05	0.5 ± 0.05	0.5 ± 0.05	0.25 ± 0.1
10	1.6 ± 0.15	0.8 ± 0.15	0.8 ± 0.15	0.3 ± 0.2
21	2.0 ± 0.2	1.25 ± 0.2	0.9 ± 0.2	0.5+0.2,-0.3
31	3.2 ± 0.2	1.6 ± 0.2	1.1 ± 0.2	0.5+0.2,-0.3
32	3.2 ± 0.2	2.5 ± 0.2	1.3 ± 0.2	0.5 ± 0.3
41	4.5 ± 0.2	1.6 ± 0.2	1.6 ± 0.2	0.5 ± 0.3
43	4.5 ± 0.2	3.2 ± 0.2	1.5 ± 0.2	0.5 ± 0.3